Evaluating the Effects of Changes in Recreation and Electricity Values on Lake Tenkiller Water Levels

Presented by

Deepayan Debnath, Tracy Boyer, PhD, Art Stoecker, PhD, Larry Sanders, PhD, Agricultural Economics

CCULIA

OKLAHOMA CLEAN LAKES AND WATERSHEDS 20TH ANNUAL CONFERENCE

Reservoir Management to Maximize Net Benefits

- Reservoir uses/needs may change after construction
- Stakeholders have multiple and possibly conflicting goals
 - Flood Control Lower levels to contain upstream flood surges
 - Hydropower
 - Releases for power in peak use/price periods
 - High lake levels to increase head over turbines
 - Municipal and Industrial Users
 - Reliable high quality supply of water especially in peak summer months
 - Recreation
 - Desire near normal lake level conditions for aesthetic pleasure and avoidance of mud flats in especially in summer months
 - Downstream uses expect normal flows or releases
- Aging structures may dictate lower levels
- Inflows from upstream are stochastic

Study Area

Tenkiller Ferry Lake in East Central Oklahoma Completed in 1953 Designated Purpose Flood control Hydropower

Lake level: 632 Feet normal pool Volume: 654,231 Acre Feet

In 2007

Power Sales \$ 2.6 million Visitors 2.9 million 1.6 million in June -August Increase/year 67,477 (2006 to 2007) Increasing interest in M&I use

Objective

Determine optimal monthly and/or weekly levels to maximize expected net social benefits derived from recreational, hydropower, M&I uses considering flood control and downstream releases

Multi-objective Stochastic Optimization

Mathematical Model

Maximize: Annual Expected Net Benefits from

Hydropower + Recreation + M&I

$$E(TB) = \sum_{t=1}^{T} \left(E(HB_t) + E(RB_t) + M\&I_t \right)$$

Subject to

 $V_{t+1} = V_t + E(I_t) - R_t - E_t$

$$V_{min} \leq V_t \leq V_{max}$$

$$R_{min} \le R_t \le R_{max}$$

$$V_t, I_t, R_t, E_t \geq 0$$

Oklahoma State University

Because of software limitations, Time is monthly for Jan, Feb, Mar, Apr, May, Sep, Oct, Nov, and Dec. Time is weekly for

June, July, and August.

Volume next period = Current volume + Inflow (stochastic) Less Releases, Less Evaporation/seepage

Upper and lower bounds on volume each time period (Flood Control, Dam Safety)

Upper and lower limits on Releases each time period

Hydroelectric power benefits

Hydropower generation equation used (ReVelle, 1999)

 $Mwh_t = f(Head_t, Qrel_t) \qquad HB_t = P_t Mwh_t$

Retail and wholesale electricity price

Hydropower generated in 2007

Peak electricity price increased by \$0.02/kwh

---Oklahoma State University---

Studies on Values of Lake Recreation

Lake Tenkiller is very Popular Tenkiller: Warner TCM (1973) \$4.67/day, in 2008 prices= \$24/d

Boyer (2008) TCM study on Oklahoma Lakes

Examples				
Lake	<u>WTP/day</u>			
Tenkiller	\$191			
Fort Gibson	\$136			
Bell Cow	\$22			

USACE, Economic Guidance Memorandum, value of visitors day \$10 by Unit Day Value Method

Value of Lake Level on Recreation

Murray et al. (2003) study of TVA Lakes found a WTP to delay September-October drawdown of \$3.12-\$11.30/ft

Roberts, Boyer, Lusk (2008) found WTP for Lake Tenkiller declined \$.82/ft for each foot below normal

Study Assumptions: Value Tenkiller Visitor Day= \$10 and \$50Value declines by \$.82 for each foot lake below normal(Both Number of Visits and the WTP depend on Lake Level)

Value of visitors day

Value of visitors day

Effect of Lake Levels on Visits

Regressed Monthly Visitors on Lake Level (1955-2010)

Rural Water Supply Benefits

Rural water supply benefits are calculated as the Net Social Benefits (NSB) derived from the water uses. It is determined as:

 $NSB_t = Consumer Surplus_t + Producer Surplus_t$

water demand by the 27 water districts in Tahlequah, Gore, Vian, Sequoyah, and Fort Gibson (USACE, 2001)

Historical Inflows

Daily Inflow data from October 1979 through June 2010 were used

> Tenkiller Reservoir receives an average of 1.2 million acre feet of water per year from the Upper Illinois River

Distribution of Inflows

Simulated Inflows Matched Actual

Optimization Results

Recreation Valued at \$50, Electricity Valued at \$0.073/Kwh

<u>Recreational Values in Objective</u> <u>Function</u> *			<u>Recreational Values not in Objective.</u> <u>Function</u> *		
Recreation* Benefit	\$	126,392	Recreation [*] Benefit	\$	110,383
Hydropower** Benefit	\$	6,890	Hydropower** Benefit	\$	7,386
Public Water Supply	\$	84,518	Public Water Supply	\$	84,518
Total Benefit (with recreation in		Total Benefit \$ (without recreation in			
Objective function)	\$	217,770	Objective function) \$		202,287

Gain Greater NSB by Including Recreation in Objective Function

-Oklahoma State University

* (values in thousand dollars)

Tradeoff b/w Recreational Gain and Hydropower Loss When Recreational Values are Included in the Objective Function

Recreational gain vs hydropower loss in US dollars (million)

Recreation valued at \$50, electricity valued at \$0.073/Kwh

Optimization Results

Visitation & Hydropower Generation at Three Different Scenarios

Optimization model visitors

\$50 VD/ Retail electricity price
\$10 VD/ Retail electricity price
\$10 VD/ Wholesale electricity price

Optimization model hydropower generation in Mwh

■ \$50 VD/ Retail electricity price

■\$10 VD/ Retail electricity price

■\$10 VD/ Wholesale electricity price

Economics of Tenilker Releases for Hydropower VS Recreation

Consider Effect of Lowering Lake Level on,

Volume Released, Hydropower Generated, Recreation Visits, Value, Net Benefits: Elec @ \$.077 /kwh, Rec @\$10/day

Lower Lake Level	Volume of Release	Chg. In Elec.	Change in Number	Change in	Total Change in Net	
From> To	acre ft.	Value	Visits	Recreational Benefit	Benefits	
	Change per foot of Decline					
637>636'	13,722	\$88,335	2,870	\$28,700	\$117,035	
636 >635'	13,524	\$86,417	2,240	\$22,400	\$108,817	
635>634'	13,335	\$84,571	1,600	\$16,000	\$100,571	
634>633'	13,153	\$82,792	950	\$9,500	\$92,292	
633>632'	12,979	\$81,075	320	\$3,200	\$84,275	
632>631'	12,811	\$79,417	1,240	\$333,036	\$253,619	
631>630'	12,650	\$77,813	1,870	\$336,270	\$258,456	

Comparisons b/w Historical and Optimization Models

Recreation, and hydropower generations benefits in US dollars (million)

Recreation valued at \$50/day, electricity valued at \$0.073/Kwh

Conclusions

- Optimization model (with recreational benefits included in the obj. function) gave higher benefits than average values calculated from historical levels and releases.
- Recreation dominates for Lake Tenkiller. Optimal lake levels remained essentially same whether recreation was valued at \$10 or \$50 per day when hydropower was valued at retail prices.
- Net social benefits can explicitly increased by considering both the market and non-market uses.
- Recreational benefits and rural water supply benefits are higher than the hydropower production benefits.

Conclusions (Contd..)

- During the summer months the visitors are sensitive to the lake levels that are both above and below normal lake level.
- For Lake Tenkiller, additional recreational values are more valuable than additional hydro-electricity generated.
- Only major change in historical levels would be to maintain higher levels through August.
- Maintain lake level near normal level during the summer months and shift the releases for hydropower generation to the other months increasing overall benefits.

Thank you !

Questions Comment or Suggestions

Different Research Components Funded by : OKLAHOMA WATER RESOURCES RESEARCH INSTITUTE, OK Agricultural Experiment Station, and Oklahoma Department of Wildlife (USFWS Coop Unit)